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ABSTRACT 

 

In population and longitudinal imaging studies that employ 
deformable image registration, more accurate results can be 
achieved by initializing deformable registration with the results of 
affine registration where global misalignments have been 
considerably reduced. Such affine registration, however, is limited 
to linear transformations and it cannot account for large nonlinear 
anatomical variations, such as those between pre- and post-operative 
images or across different subject anatomies. In this work, we 
introduce a new intermediate deformable image registration (IDIR) 

technique that recovers large deformations via windowed cross-
correlation, and provide an efficient implementation based on the 
fast Fourier transform. We evaluate our method on 2D X-ray and 3D 
magnetic resonance images, demonstrating its ability to align 
substantial nonlinear anatomical variations within a few iterations. 
 

Index Terms—Intermediate deformable image registration 
(IDIR), windowed cross-correlation, fast Fourier transform. 

 
1. INTRODUCTION 

 
Spatial correspondences among medical images are often needed in 
population and longitudinal imaging studies and are typically 
computed through image registration. Affine (linear) transformation 
is generally not sufficient to account for cross-subject anatomical 
variation and temporal changes in an individual anatomy, thereby 

making the two-step affine + deformable [1] image registration 
necessary in many analysis pipelines. 

Standard deformable registration techniques commonly 
perform an optimization, during which the displacement field is 
updated iteratively using the very local information that the image 
gradient provides. In the presence of large deformations, however, 
the locality of this information may cause the registration to 
converge to the wrong local optimum and/or require many iterations 

with the associated increased computational burden. To alleviate 
these issues, the displacement field is often smoothed (regularized) 
[2, 3], hence corrected in each region using information from a 
neighborhood as large as the smoothing kernel. Furthermore, given 
that lower-resolution versions of the images show smaller variations 
(in pixels), they are pyramidally exploited either explicitly by down-
sampling (coarse-to-fine registration) [4] or implicitly through 
contracting layers of a convolutional neural network [5-8]. 
Nonetheless, a transformation model neither as global as affine nor 

as local as most current deformable ones remains desirable, as it 
would provide an intermediate step for registration, which might 
improve the overall process. 

In this work, we present a new deformable registration 
algorithm based on windowed cross-correlation (CC). We compute 
local translations by masking the two images with a sliding window 
function that is effectively half the size of the image (in each 

dimension). The large size of the neighborhood that is taken into 
account to compute the deformation field at each pixel makes our 

method a suitable intermediate deformable image registration 
(IDIR) approach – particularly in the presence of large deformations 
– to be used prior to standard (local) deformable registration. We 
validate our approach by applying it to the 2D X-ray and 3D 
magnetic resonance imaging (MRI) modalities. 

In the following, we describe the proposed method in detail 
(Section 2) and present experimental results (Section 3) along with 
some concluding remarks (Section 4). Our Matlab function, 
registerIDIR, is included in our publicly available deformable 

image registration toolbox (www.nitrc.org/projects/msi-register). 
 

2. METHODS 

 
For simplicity, we start by describing our method on one-

dimensional (1D) signals. Let ��, ��: ⟦0, � − 1⟧ → ℝ be two 1D 

discrete-domain signals of length � to be registered, where ⟦�, �⟧ ≔��, � + 1, … , �� for �, � ∈ ℤ. We would like to compute the 

transformation �: ⟦0, � − 1⟧ → ℝ, or equivalently the displacement 

field �� ≔ �� − �, which makes �� ∘ � similar to ��. 
 

2.1. Global Cross-Correlation 

 
To avoid wrap-around effects during circular CC (see below), we 

first zero-pad �� and �� on their right sides, resulting in � and � of length 2� − 1, which we consider periodic outside their domain (i.e., �� =�� � ! "#$%). We then use the fast Fourier transform (FFT) to divide 
the frequency components of each signal by their magnitudes, to 
benefit from the more effective reflection of the degree of alignment 
by CC when the image contains only the phase information [9, 10]. 

To find the global translation that best aligns two images, the 

following global CC, &: ⟦−'� − 1(, � − 1⟧ → ℝ, has been 
traditionally used [9-11]: 

&) ≔ '� ⋆ �() = + ����,)
"#$"

�-.
. (1)

The sum is equivalent to a circular convolution that can be 
efficiently computed in the frequency domain via FFT in 0'� log �(, as ℱ$%5ℱ���∗. ℱ���7. The shift 89 maximizing &) is then 

regarded as the translation best aligning the two signals. This global 
translation-only registration, thus, simply produces the constant 

displacement field �� = 89. Next, we will extend the CC so it can 
produce a spatially varying 1D deformation field. 

 
2.2. Windowed Cross-Correlation 

 
As described above, global CC takes the entire domain of the two 

images into account to produce a single optimal global translation. 
A deformation field, on the other hand, is a set of local translations 



that are optimized while focusing on smaller regions in the image. 
CC can still be used for this purpose if the images are masked with 
a window function centered at the desired region, so the 
displacement (i.e., local translation) is computed with a focus on the 
image contents of that region (along the same lines as how local 
correlation coefficient has been exploited [12]). To compute the 

displacement �: for a region centered at ; ∈ ⟦0, � − 1⟧, we propose 

the following smooth window function, <:: ⟦0,2� − 2⟧ → ℝ: 

<:,� ≔ cos?@'� − ;(A , @ ≔ B2� − 1. (2)

The window function is chosen in such a way that, when 

multiplied by the zero-padded image, for any ; ∈ ⟦0, � − 1⟧, the 

image contents (at � ∈ ⟦0, � − 1⟧) only coincide with the central 

(positive) lobe of the window; given that @'� − ;( ∈'− B 2⁄ , B 2⁄ (. The deformation field is then computed as: �: = argmax) &:,) ≔ argmax)∈⟦$'#$%(,#$%⟧'<:� ⋆ <:�() . (3)

This update can be used in an iterative process until 

convergence. To that end, we keep an overall transformation �H 

(initialized as identity) and update it as �H ← �H ∘ � (recall �: =; + �:), and repeat the next iteration with the updated image �� ∘ �H. 
One can yet immediately notice a severe practical drawback for 

the deformation update presented in Eq. (3). Even when employing 

efficient FFT for CC, computing the deformation field for all � 

values of ; would take 0'�" log �( operations, which is 
prohibitively large for images. In the next section, we will show how 
to reduce the computational complexity, thereby making the 
proposed IDIR feasible. 
 
2.3. Computational Complexity Reduction 

 
To reduce the computational cost of the deformation update, we 

exploit the expansion of the cosine function and rewrite Eq. (2) as: <:,� = cos'@�( cos'@;( + sin'@�( sin'@;(. (4)

The term '<:� ⋆ <:�( now expands to four CCs, which can be 
simplified into three terms, 

'<:� ⋆ <:�() = + LM,)NM,:
O

M-%
, (5)

where LM,) and NM,: are derived in Table 1. 

We now approximate the argmax operation in Eq. (3) by 
raising '<:� ⋆ <:�( to the power of P ∈ ℕ to amplify and sharpen 
its peak,  

R:,) ≔ '<:� ⋆ <:�()S = T+ LM,)NM,:
O

M-%
U

S
, (6)

and then approximating its peak location as its center of mass: 

�: ≅ ∑ 8R:,)#$%)-$'#$%(∑ R:,)#$%)-$'#$%( . (7)

Since CC of phase images can occasionally contain small 

negative values, P needs to be an odd natural number, so such 

negative values do not change sign (we used P = 3 in Section 3). 

Multinomial expansion of Eq. (6) results in YS ≔ ?S,"S A terms 

(e.g., YO = 10),  

R:,) = + LZ[,)N9[,:
\]

[-%
, (8)

where LZ[ (resp. N9[) is computed following the multinomial theorem, 

i.e., as the product of LMs (resp. NMs) for P selections of ^ with 
repetitions allowed. Following Eqs. (7) and (8), the field becomes: 

�: ≅ ∑ N9[,: ∑ 8LZ[,)#$%)-$'#$%(\][-%∑ N9[,: ∑ LZ[,)#$%)-$'#$%(\][-%
. (9)

Thanks to the separation of functions of ; from those of 8 in 
Eq. (9), the deformation field can now be computed for the entire 
image simultaneously. We compute the inner sum independently of ;, and then the outer sum for all values of ;. Since a fixed number 

of FFTs are sufficient to produce and store all LMs, the entire � is 

computed in one pass in 0?�'YS + 7 log �(A, i.e. significantly less 

than the original 0'�" log �(, thus making our approach practical. 
Next, we will extend the proposed method to images. 

 
2.4. Extension to Higher Dimensions 

 

For a ̀ -dimensional image of size �% × … × �b, with � = �% … �b 
pixels, we generalize the window function in Eq. (2) as: 

<:cc⃑ ,�c⃑ ≔ e cos?@f'�f − ;f(Ab

f-%
, @f ≔ B2�f − 1. (10)

This generates 3b terms in Eq. (5) and YS,b ≔ gS,Oh$%S i terms 

in Eq. (8) (e.g., YO," = 165 and YO,O = 3654). The vector field �c⃑ :cc⃑  

is then computed similarly to Eq. (9), in more general 0 g�?`YS,b + '2b,% + 3b( log �Ai. 

 
2.5. Implementation 

 
In our implementation, which we have made publicly available 
(see Section 1), the following were considered. 

We apply a compositive scheme similar to the diffeomorphic 

demons framework [13] to update the deformation field. 
When dividing the Fourier transform by its magnitude to create 

phase-only images, for more robustness, we divide it instead by the 
magnitude plus 0.001 times its norm, which reduces the weighting 
of low-magnitude frequency components. 

Moreover, to increase stability, we reduce the effects of the 
peaks in the CC far from the origin by weighting the numerator and 

denominator of Eq. (9) by an isotropic Gaussian centered at 8 = 0 
with a width equal to a tenth of the mean image dimension, which 

can be efficiently done by equivalently multiplying each LM,) by a 

Gaussian with P times the variance. We used this CC weighting only 
for images where the object was cropped by the borders (such as the 
X-ray images in Section 3.1), as we did not notice an improvement 

when the object did not touch the borders (such as the brain images 
in Section 3.2). Further regularization (e.g., smoothing [3]) of the 

Table 1.  Components of '<:� ⋆ <:�(). m nm,o pm,q 

1 'cos'@�( �� ⋆ cos'@�( ��() 1 

2 'sin'@�( �� ⋆ cos'@�( ��() + 'cos'@�( �� ⋆ sin'@�( ��() sin'@;( cos'@;( 

3 'sin'@�( �� ⋆ sin'@�( ��() − 'cos'@�( �� ⋆ cos'@�( ��() sin"'@;( 



update field is not necessary, given the inherent smoothness of the 
basis functions of the field (Table 1, right column). 

Instead of keeping the native space of �� as the reference space, 
one could alternatively define forward and backward 

transformations, �c⃑ �c⃑rs ≔ �c⃑ + �c⃑ �c⃑ 2⁄  and �c⃑ �c⃑ts ≔ �c⃑ − �c⃑ �c⃑ 2⁄ , and 

perform symmetric updates of �� ← �� ∘ �c⃑ rs and �� ← �� ∘ �c⃑ ts [14]. 
However, we empirically found the asymmetric update, which does 
not deal with the mid-space drift issue [15], to be more stable. 

Computing the YS,b terms during the summation in Eq. (9) 

(despite no need to store them all in memory) is the most 

computationally expensive step of the proposed IDIR, as each LZ[ or N9[ requires P − 1 image multiplications. Nevertheless, by properly 

sorting the multinomial expansion, the results of the first P − 2 
multiplications in a term can be kept and reused for many 
subsequent terms, effectively reducing the number of necessary 

multiplications to 1 for most terms. Alternatively, these terms can 
be computed in parallel threads and summed. 

 
3. RESULTS AND DISCUSSION 

 
3.1. Experiments on 2D X-Ray Images 

 
We applied our method first on public 2D pre- and post-operative 
X-ray images. In one experiment, we used a pair of jaw images of 
the size 170×194 acquired before and after an orthognathic surgery 

[16], and in another, we used a pair of foot images of the size 
424×248 acquired before and after a metatarsus adductus surgery 

[17]. The original images, along with the results at iterations 1, 2, 
and 20 are shown in Figure 1. The large window in CC computation 
brings about the benefit of correcting large deformations within only 
a few iterations, but also the caveat of not fully aligning finer details 
that require sharp transitions in the deformation field. For 
comparison with standard deformable registration, we previously 
applied the demons method to the same jaw images, achieving 
accurate alignment but after about a thousand iterations [18]. 

Together, these results suggest the potential advantage of initializing 
(local) deformable registration with the proposed IDIR method. 

Regarding the algorithm runtime, each iteration took 0.1 and 
0.2 seconds in the first and second experiment, respectively, on a 
computer with a 12-core 3.6GHz (4.5GHz Turbo) Intel Xeon Gold 
CPU. We did not explicitly parallelize the code; however, Matlab 
often inherently multi-threads its internal operations. 

 

3.2. Experiments on 3D Magnetic Resonance Images 

 
Next, we tested our algorithm on a 3D longitudinal fetal brain MRI 
atlas with T2 images of the size 145×125×121, provided to the 
public by the Computational Radiology Laboratory of the Boston 
Children’s Hospital [19]. We registered the first time-point of the 
atlas (week 21) to its last (week 38). The original images, along with 
iterations 1, 2, 3, and 50, are shown in Figure 2 from three 
viewpoints. Each iteration took 7.5 seconds on a graphics processing 

unit (Nvidia RTX A6000 GPU) or 40.6 seconds on the CPU (same 
hardware as in Section 3.1). As expected, our windowed-CC based 
IDIR method finds the bulk of the deformation that maps the smaller 
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Figure 1.  Different iterations of the registration of the pre- (green) to post-surgery (red) X-ray images using the proposed IDIR method. 



to the larger brain within a few iterations, eventually achieving 
reasonable alignment that can be perfected by standard deformable 
registration initialized with the IDIR result. 

The dataset also contained 116 labels for different regions and 

structures of the brain. After propagating the labels using nearest-
neighbor interpolation, we computed the portion of the voxels where 
the labels from the two images correctly overlapped, which is 
plotted for each iteration in Figure 3. The increasing nature of the 
plot indicates consistent improvement at each iteration, with most of 
the alignment occurring during the first few iterations. 

For comparison, we ran the asymmetric diffeomorphic demons 
[13] (using our code: www.nitrc.org/projects/msi-register) on this 

image pair with empirically optimized (smoothing, etc.) parameters, 
once for 100 iterations at a single resolution, and again with a 
coarse-to-fine scheme for 100, 50, and 25 iterations at three 
resolution levels, resulting in the label overlap ratios of 0.65 and 
0.76, respectively, i.e. slightly lower than the 0.77 seen in Figure 3. 

When we initialized the single-level diffeomorphic demons 
with the IDIR result, however, the label overlap increased to 0.80. 

 

4. CONCLUSIONS 

 
We have introduced a new intermediate step for deformable image 
registration, which exploits efficient FFT-based windowed CC 
computation for alignment. The large window used by the proposed 
IDIR method facilitates retrieval of large deformations in only a few 
iterations – as is apparent from our results on 2D X-ray and 3D MRI 

images – but may also prevent eventual capturing of fine-grained 
deformations. Our method is, therefore, not meant to be directly 
compared to standard deformable registration; instead, its potential 
may lie in initialization of (iterative or deep-learning based) 

deformable registration, offering it a head start in order to achieve a 
more accurate optimal solution in fewer iterations. Quantitative 
validation of such a two-step registration pipeline on image 
databases with gold-standard labels is part of our ongoing research. 

Original Iteration 1 Iteration 2 Iteration 3 Iteration 50 

Figure 2.  Central sagittal (top), coronal (middle), and axial (bottom) slices of the 3D fetal brain atlas are shown at different registration 

iterations (from left to right), while the first time-point (week 21, green) is registered to the last time-point (week 38, red) using the 

proposed IDIR method. 

Figure 3.  Label overlap ratio between the moving and reference 

fetal brain images at each IDIR iteration. 
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5. COMPLIANCE WITH ETHICAL STANDARDS 
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